Neurotransmitter Release & Receptors

Ben Richardson, PhD Department of Pharmacology

FOUNDATIONAL PRINCIPLES OF THE BRAIN'S DYNAMIC INTERACTIONS

Part 1: Neurotransmitter Release

- NTs in Vesicles
- Mechanisms of Vesicle Fusion
- Vesicle Cycling
- Quantal Release
- Short-term plasticity

NEUROTRANSMITTERS IN VESICLES

1-4 Active zones (fusion sites)/varicosity or bouton

DEPOLARIZATION CAUSES VESICLE FUSION

0-2 vesicles released/AP/active zone

Fund. Neuroscience, 4th Ed.

VESICLES FUSE NEAR Ca²⁺ CHANNELS

Why is fusion limited to areas near Ca²⁺ channels?

VESICLES FUSE NEAR Ca²⁺ CHANNEL-DENSE MICRODOMAINS

- Total [Ca²⁺]_i changes are small
- "Local" [Ca²⁺] changes may be >1000X
- Low variability & high reliability

Fund. Neuroscience, 4th Ed.

AN EFFICIENT ENDO-EXOCYTOSIS CYCLE IS NECESSARY TO MAINTAIN

<u>Docked</u>: tethered to release site <u>Primed</u>: ready for fusion

-Local synthesis of new vesicles and associated protein *de novo* is inefficient. e.g. 5Hz firing rate with 200 vesicles/terminal = <1m max duration of response

Fund. Neuroscience, 4th Ed.

VESICLE FUSION IS A COORDINATED Ca²⁺-DEPENDENT PROCESS

EM Reconstruction

 TABLE 7.1
 Function of Synaptic Vesicle Proteins

Protein	Function
Proton pump	Generation of electrochemical gradient of protons
Vesicular transmitter transporter	Transmitter uptake into vesicle
VAMP/synaptobrevin	Component of SNARE complex; acts in a late, essential step in vesicle fusion
Synaptotagmin	Ca ²⁺ -binding trigger for fusion and component of vesicle docking at release sites via interactions with SNARE complex and lipid; promotes clathrin-mediated endocytosis by binding AP-2 complex
Rab3	Possible role in regulating vesicle targeting and availability
Synapsin	Likely to tether vesicle to actin cytoskeleton
Cysteine string protein	Promotes reliable coupling of action potential to exocytosis
SV2	Unknown Levetiracetam Binding
Synaptophysin	Unknown, endocytosis?

QUANTAL RELEASE SHAPES SYNAPTIC RESPONSES

Minimum amplitude responses are due to release of a single vesicle. **Large amplitude responses are built from responses to multiple single vesicles*

CAVEATS TO QUANTAL RELEASE

- Nonuniformity of Quanta (vesicle content, receptors)
- Nonuniformity of release sites (Ca²⁺ channel variation)
- Variation in membrane excitability
- Receptor saturation
- Silent synapses (release w/out receptors)

SYNAPTIC FACILITATION

Jackman & Regehr, 2017

SYNAPTIC DEPRESSION

- Depletion of Readily Releasable Vesicles
 - high release probability
 - small readily releasable pool
- Autoinhibition (e.g presynaptic autoreceptors)
- Receptor Desensitization

Part 2: Neurotransmitter Receptors

- Ionotropic & Metabotropic Receptors
- Glutamate Receptors (AMPAR, NMDAR, Kainate, mGluR)
- GABA Receptors (GABA_AR, GABA_BR)
- Glycine Receptors
- Acetylcholine (nAChR, mAChR)
- Dopamine Receptors
- Adrenergic Receptors
- Serotonin Receptors
- Receptor modification & Plasticity

IONOTROPIC AND METABOTROPIC RECEPTORS

 $-G_s/G_i/G_q$

Neurotransmitters and Their Receptors

GLUTAMATE RECEPTORS

Molecular Neuropharmacology; Nestler, et al. 3rd Ed.

IONOTROPIC GLUTAMATE RECEPTORS

AMPA receptors:

- Fast on/off response
- Na⁺ and Ca²⁺ permeable
- Underlie long-term potentiation (<u>LTP</u>)

NMDA receptors:

- <u>Blocked by Mg²⁺</u> at resting membrane potentials require depolarization to be activated
- <u>Highly Ca2+ permeable</u>
- Driving force of <u>synaptic plasticity</u> underlying learning and memory

LIGAND-GATED INHIBITORY RECEPTORS

GABA_A AND GLYCINE RECEPTORS

Ligand-Gated

- →Selectively Fluxes Cl⁻ ions
- Pentameric Protein Complexes
- →GlyR: 5 subunits
 - $\Rightarrow \alpha_{1-4} \text{ or } \beta_1$
- GABA_AR: 19 subunits
 - \Rightarrow α₁₋₆, β₁₋₃, γ₁₋₃, δ, ρ, ε₁₋₃, θ, π

Glycine Receptor

Fritschey et al., Trends in Neurosci, 2008 Jacob et al., Nature Reviews, 2008

GABA_A RECEPTOR DIVERSITY

GABA_B RECEPTOS

- Often a presynaptic autoreceptor
- Gi-coupled receptor
 - Activates inwardly-rectifying potassium channels (GIRKs)
 - inhibition of Cav channels
 - inhibition of adenylyl cyclase (cAMP production).
- Common agonists **<u>Baclofen</u>** (spasticity in Cerebral Palsy)

GABA_AR

ACETYLCHOLINE RECEPTORS

Muscarinic ACh Receptors/mAChRs (M1-M5):

- M1 (odds) and M2 (evens) Classes
 - Gq-coupled (M_1 , M_3 , M_5): activate calcium release (IP3) and
 - Gi-coupled (M₂, M₄): inhibition of adenylyl cyclase (cAMP production) and K+ channel activation.
- Common off target site (anticholinergic side effects)

Nature Reviews | Drug Discovery

Nicotinic Ach Receptors/nAChRs:

- Heteropentamer (17 subunits)
- Tissue-specific subunit composition
- α subunits bind Ach
- Cation-permeable pore

nACHR ACTIVATION

In the continued presence of ACh, nAChR undergoes an additional conformational change (desensitized) and no longer conducts current.

DOPAMINE RECEPTORS

Molecular Neuropharmacology; Nestler, et al. 3rd Ed.

ADRENERGIC RECEPTORS

SEROTONIN (5-HT) RECEPTORS

Source: Barrett KE, Barman SM, Boltano S, Brooks HL: Ganong's Review of Medical Physiology: www.accessmedicine.com Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

tabotropic	Ionotropic
erotonin	Serotonin
5-HT _{1A}	5-HT _{3A}
5-HT _{1D}	5-HT _{3C}
5-HT _{1E}	5-HT
5-HT _{1F}	3-111 _{3E}
5-HT _{2B}	
5-HT _{2C}	
5-HT ₄	
5-HT _{5A}	Invitational Datas
5-HT ₆	mysiological koles o

Sero

5-H

5-H

5-H

5-H

5-H

5-H

5-H

5-H

5-H

5-HT,

Physiological Roles of	f 5-HT Receptors	s Defined by	Phenotypes in I	Knockout Mice

	5-HT _{1A}	5-HT _{1B}	5-HT _{2A}	5-HT _{2B}	5-HT _{2C}	5-HT ₃	5-HT ₄	5-HT _{5A}
Anxiety	\uparrow^a		\downarrow^c					
Aggression		1 ^b						
Heart defects				Lethald				
Food intake					↑e			
Seizure susceptibility					Ť		<u>↑</u> g	
Nociception						\bigvee		
Exploratory activity								\uparrow^h
Ethanol sensitivity								
Thermoregulation								

Arrow indicates direction of alteration of the trait.

"Parks et al., 1998; "Saudou et al., 1994; "Weisstaub et al., 2007; "Nebigil et al., 2000; "Tecott et al., 1995; "Zeitz et al., 2002; ^hGrailhe et al., 1999; 'Bonasera et al., 2006; 'Hedlund et al., 2003.

RECEPTOR MODIFICATION & PLASTICITY

Collingridge et al., Nat Rev Neuro, 2004 Fund. Neuroscience, 4th Ed.

Postsynaptic

Thank you!

Questions?

Ben Richardson brichardson29@siumed.edu